Generalized Quasilinearization for the System of Fractional Differential Equations
نویسندگان
چکیده
منابع مشابه
System of fuzzy fractional differential equations in generalized metric space
In this paper, we study the existence of integral solutions of fuzzy fractional differential systems with nonlocal conditions under Caputo generalized Hukuhara derivatives. These models are considered in the framework of completegeneralized metric spaces in the sense of Perov. The novel feature of our approach is the combination of the convergentmatrix technique with Schauder fixed point princi...
متن کاملThe Generalized Quasilinearization Method for Parabolic Integro-differential Equations
In this paper we consider the nonlinear parabolic integro-differential equation with initial and boundary conditions. We develop the method of generalized quasilinearization to generate linear iterates that converge quadratically to the unique solution of the nonlinear parabolic integro-differential equation. For this purpose, we establish comparison results for the parabolic integro-differenti...
متن کاملInitial time difference quasilinearization for Caputo Fractional Differential Equations
Correspondence: [email protected]. tr Department of Statistics, Gaziosmanpasa University, Tasliciftlik Campus, 60250 Tokat, Turkey Abstract This paper deals with an application of the method of quasilinearization by not demanding the Hölder continuity assumption of functions involved and by choosing upper and lower solutions with initial time difference for nonlinear Caputo fractional different...
متن کاملOn Quasilinearization Method for Hybrid Caputo Fractional Differential Equations
In this paper we present the methods of Quasilinearization and Generalized Quasilinearization for hybrid Caputo fractional differential equations which are Caputo fractional differential equations with fixed moments of impulse. In order to prove this results we use the weakened assumption of -continuity in place of local Hölder continuity.
متن کاملGeneralized Quasilinearization Method for Nonlinear Functional Differential Equations
We develop a generalized quasilinearization method for nonlinear initial value problems involving functional differential equations and obtain a sequence of approximate solutions converging monotonically and quadratically to the solution of the problem. In addition, we obtain a monotone sequence of approximate solutions converging uniformly to the solution of the problem, possessing the rate of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Function Spaces and Applications
سال: 2013
ISSN: 0972-6802,1758-4965
DOI: 10.1155/2013/793263